Probabilistic Latent Semantic Analysis
نویسنده
چکیده
Probabilistic Latent Semantic Analysis (pLSA) is a technique from the category of topic models. Its main goal is to model cooccurrence information under a probabilistic framework in order to discover the underlying semantic structure of the data. It was developed in 1999 by Th. Hofmann [7] and it was initially used for text-based applications (such as indexing, retrieval, clustering); however its use shortly spread in other fields: such as computer vision [14, 16, 10] or audio processing [5]. PLSA can be regarded in two seemingly different ways:
منابع مشابه
Probabilistic Latent Semantic Analysis
Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of two{mode and co-occurrence data, which has applications in information retrieval and ltering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent Semantic Analysis which stems from linear algebra and performs a Singular Value Decomposition of co-occu...
متن کاملProbabilistic Latent Semantic Analysis (PLSA) untuk Klasifikasi Dokumen Teks Berbahasa Indonesia
Abstrak Salah satu pekerjaan yang ada di dalam mengelola dokumen adalah bagaimana menemukan intisari dari dokumen. Topic modeling merupakan teknik yang dikembangkan untuk menghasilkan representasi dokumen berupa kata-kata kunci dari dokumen. Kata-kata kunci tersebut yang akan digunakan dalam proses pengindeksan serta pencarian dokumen untuk ditemukan kembali sesuai kebutuhan pengguna. Pada pene...
متن کاملQuery Expansion Using a Collection Dependent Probabilistic Latent Semantic Thesaurus
Many queries on collections of text documents are too short to produce informative results. Automatic query expansion is a method of adding terms to the query without interaction from the user in order to obtain more refined results. In this investigation, we examine our novel automatic query expansion method using the probabilistic latent semantic thesaurus, which is based on probabilistic lat...
متن کاملImproving Probabilistic Latent Semantic Analysis with Principal Component Analysis
Probabilistic Latent Semantic Analysis (PLSA) models have been shown to provide a better model for capturing polysemy and synonymy than Latent Semantic Analysis (LSA). However, the parameters of a PLSA model are trained using the Expectation Maximization (EM) algorithm, and as a result, the trained model is dependent on the initialization values so that performance can be highly variable. In th...
متن کاملQuery expansion based on relevance feedback and latent semantic analysis
Web search engines are one of the most popular tools on the Internet which are widely-used by expert and novice users. Constructing an adequate query which represents the best specification of users’ information need to the search engine is an important concern of web users. Query expansion is a way to reduce this concern and increase user satisfaction. In this paper, a new method of query expa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011